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Several rule induction methods have been introduced in order to
discover meaningful knowledge from databases, including medical
domain. However, most of the approaches induce rules from all the
samples are derived. In this paper, a new approach to knowledge
acquisition, which induce probabilistic rules incrementally by using
rough set technique, is introduced and was evaluated on two
clinical databases. The results show that this method induces the
same rules as those induced by ordinary non-incremental learning
methods, which extract rules from all the datasets, but that the
Jormer method requires more computational resources than the
latter approach.

INTRODUCTION

Several symbolic inductive leaming methods, such as induction of
decision trees[1,5], and AQ family[3], have been proposed to
discover meaningful knowledge from large databases. However,
most of the approaches induce rules from all the data in databases,
and cannot induce incrementally when new samples are derived.
So, we have to apply rule induction methods again to the databases
when such new samples are given, which causes the computational
complexity to be expensive even if the complexity is O(n?).

Therefore, it is important to develop incremental leaming systems
in order to manage large databases[6,8]. However, most of the
previously introduced leaming systems have the following two
problems: first, those systems do not outperform ordinary leaming
systems, such as AQ15[3], C4.5[5] and CN2[2]. Secondly, those
incremental leaming systems mainly induce deterministic rules,
which are often overfitted to datasets. Thus, it is indispensable to
develop incremental leaming systems which induce probabilistic
rules to solve the above two problems.

Extending concepts of rule induction methods based on rough set
theory, we introduce a new approach to knowledge acquisition,
which induces probabilistic rules incrementally, called
PRIMEROSE-INC (Probabilistic Rule Induction Method based on
Rough Sets for Incremental Leaming Methods).

Although the previously introduced rule induction method
PRIMEROSE]7], which extracts rules from all the data in database
uses apparent accuracy to search for probabilistic rules,
PRIMEROSE-INC first uses coverage to search for the candidates
of rules, and secondly uses accuracy to select from the candidates.

This system was evaluated on two clinical databases: databases on

meningoencephalitis and databases on headache with respect to the

following four points: accuracy of classification, the number of
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generated rules, spatial computational complexity, and temporal
computational complexity. The results show that PRIMEROSE-INC
induces the same rules as those induced by PRIMEROSE, but that
the former method requires more computational resources than the

latter approach.
PROBABILISTIC RULES

Rough Set Theory

Rough set theory clarifies set-theoretic characteristics of the classes
over combinatorial pattems of the attributes, which are precisely
discussed by Pawlak[4]. This theory can be used to acquire some sets
of attributes for classification and to evaluate how precisely the
attributes are able to classify data.

Table 1: An Example of Database

No. loc nat his nau class
1 who per per no m.ch.
2 who per per no m.ch,
3 lat thr per no | migraine
4 who thr per yes | migraine
5 who per per no psycho

NOTATIONS: loc: location, nat: nature, his: history, nau: nausea,
who: whole, lat: lateral, per: persistent,
thr: throbbing, m.c.h.: muscle contraction headache,
migraine: classic migraine,
psycho: psychogenic headache.

Let us illustrate the main concepts of rough sets which are needed for
our formulation. Table 1 is a small example of database which
collects the patients who complain of headache. First, let us consider
how an attribute “loc” classify the headache patients' set of the table.
The set whose member satifies [loc=who] is {1,2,4,5}, which shows
that the attribute “loc” of 1st, 2nd, 4th and Sth cases is equal to
“who”(In the following, the numbers in a set are used to represent
each record number). This set means that we cannot classify
{1,2,4,5} further solely by using the constraint R=[loc=who]. This
set is defined as the indiscemible set over the relation R and
described as follows: [X]x = {1,2,4,5}. In this set, {1,2} suffer from
muscle contraction headache(“m.ch), {4} from classical
migraine(“migraine”), and {5} from psycho(“psycho”). Hence we
need other additional attributes to discriminate between “m.ch.”,
“migraine”, and “psycho”. Using this concept, we can evaluate the
classification power of each attribute. For example, “nat=thr” is
specific to the case of classic migraine(“migraine”). We can also
extend this indiscemible relation to multivariate cases, such as
[XJsoostorimmmre= {1,2} AN [X}poomyto] virmeno= {1,2:4,5}, where ~and v



denote "and" and "or" respectively. In the framework of rough set
theory, the set {1,2} is called strictly definable by the former
conjunction, and also called roughly definable by the latter
disjunctive formula.

In this way, the classification of training samples D is characterized
in the set-theoretic framework:Steps for classification are defined as
search methods for the best set [x]; which is supported by the
relation R Moreover, two important statistical measures for
classification, accuracy and coverage (true positive rate) are defined
as:

(D) =|[x]x I DU|[x]gl,x £ (D) =|[x]x 1 DI D|
where |A|, ar(D), and kR(D) denote the cardinality of a set A, an
accuracy of R as to classification of D, and a coverage, or a true
positive rate of R to D, respectively. For example, when R and D
are set to [nau=yes] and [class=migraine], ar(D) =1/1=1.0 and
xR(D)=1/2=0.50.

For further information on rough set theory, readers could refer to
[4.9].

Definition of Probabilistic Rules

The most simplest probabilistic rules are classification rules which
havehighaocmacyandhighcoverage.1 Such rules can be defined
as:

R——>d,R=Nai =vjl,ay(D)>8,,k(D)>6,
where d denote a class to which all the members of D belong and
where 8y and & denote given thresholds for accuracy and
coverage, respectively. For the above example shown in Table 1,
probabilistic rules for m.c.h. are given as follows:

[loc=who]&[nau=no] - m.ch. 0a=2/3=0.67,x=1.0,
[nat=per] > m.ch. a=2/3=0.67,x=1.0.

where §y and 3y are set to 0.5 and 0.3, respectively. It is notable
that

this rule is a kind of probabilistic proposition with two statistical
measures, which is one kind of an extension of Ziarko's variable
precision model(VPRS)[9].2

PROBLEMS IN INCREMENTAL RULE INDUCTION
The most important problem in incremental leaming is that, even in

an applied domain where the rules are deterministic, it does not
always induce the same rules as those induced by ordinary leaming

1Inthismodel,weasmnethataocuracyisdominantovercoverage.

2InVPRSmodel,thetwoplvecisionsofatacn.llacyisgiven,andthe
probabilistic proposition with accuracy and two precision conserves the
characteristics of the ordinary proposition. Thus, our model is to introduce
the probabilistic proposition not only with accuracy, but also with coverage.
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systems[8].3 Furthermore, since induced results are strongly
dependent on the former training samples, the tendency of overfitting
is larger than the ordinary leaming systems.

The most important factor of this tendency is that the revision of rules
is based on the formerly induced rules, which is the best way to
suppress the exhaustive use of computational resources. However,
when induction of the same rules as ordinary leaming methods is
required, more computational resources will be needed, because all
the candidates of rules should be considered.

Thus, for each step, computational space for deletion of candidates
and addition of candidates is needed, which causes the computational
speed of incremental learning to be slow. Moreover, in case when
probabilistic rules should be induced, the situation becomes much
severer, since the candidates for probabilistic rules become much
larger than those for deterministic rules.

In our approach, we first focus on the performance of incremental
leaming methods, that is, we introduce a method which induces the
same rules as those derived by ordinary leaming methods. Then, we
estimate the effect of this induction on computational complexity.

AN ALGORITHM

In order to provide the same classificatory power to incremental
leaming methods as ordinary leaming algorithms, we introduce

an incremental leaming method PRIMEROSE-INC(Probabilistic
Rule Induction Method based on Rough Sets for Incremental
Leamning Methods). PRIMEROSE-INC first measures the statistical
characteristics of coverage of elementary attribute-value pairs. There
it measures the statistical characteristics of accuracy of the whole
pattern of attribute-value pairs observed in a dataset.

In this algorithm, we use the following characteristic of coverage.

Proposition 1 (Monotonicity of Coverage)
Let R;+; denote an attribute-value pair, which is a conjunction of R;
and [a;+1=v;+,]. Then,

Kiu(D) < Ke(D).

Proof Since [X]g,; < [X]; holds,
Kx(D) = |[X]res NDYID} < |[X]gs NDYIDF= k(D).

Furthermore, in rule induction methods, R;+; is selected to satisfy
Opi(D) 205(D). Therefore, it is sufficient to check the behavior of
coverage of elementary attribute-value pairs in order to estimate the
characteristics of induced rules, while it is necessary to check the
behavior of accuracy of elementary attribute-value pairs and
accuracy of pattems observed in the databases in order to estimate the
characteristics of induced rules.

Algorithm for Rule Induction. From these considerations, the

3 Here, ordinary leaming systems denote methods that induces all rules by
using all the samples.



selection algorithm is defined as follows, where the following four

- lists are used. List; and Listy store elementary relations which
decrease and increase its coverage, respectively, when a new
training sample is given. List, is a list of probabilistic rules which
satisfies the condition on the thresholds of accuracy and coverage.
Finally, List, stores a list of probabilistic rules which do not satisfy
the above condition.

For rule induction, the following steps are applied to each class d,
the set of which is equal to D.

(1) Revise a coverage and an accuracy of each elementary atiribute
value pair [a;=v;] by using a new additional sample S.

(2) For each pair ry=[a;/=v;], krj{(D) decreases, then store it into
List;. Else, store it into List,.

(3) For each member 7 in List;, search for a rule in List; whose
condition R includes r;; and which fails to satisfies ag(D) 25, and
Kp(D) 23,. Remove it from List,, and Store it into List,.

(4) For each member 7;; in List,, search for a rule in List,, whose
condition R includes ;. If it satisfies og(D) 25, and k(D) 23,
then remove it from List, and store it into List,. Otherwise, search
for a rule which satisfies the above condition by using rule
induction methods.4

(5) For other rules in List,, revise accuracy and coverage. If a rule
satisfies ap(D) 28, and kg(D) =3,, then remove it from List, and
store it into List,.

For example, let us consider a case when the following new sample

issprovidedaﬁeraﬂﬂlepmbabilisticmlwammduoedﬁ'omTablel:

No. loc nat his nau class

6 lat thr per no m.ch.

The initial condition of this system derived by Table 1 is
summarized into Table 2, and List, and List, for m.c.h. are given as
follows: List;~{[loc=who}&[nau=no}],[nat=per]},and
Listy={[loc=who],[loc=lat],[nat=thr],lhis=per], [nau=yes],

[nau=no] }.

Table 2: Accuracy and Coverage of Elementary Relations (m.c.h.)

Relation Accuracy Coverage

[loc=who] 0.5 1.0
[loc=lat] 0.0 0.0
[nat=per] 0.67 1.0
[nat=thr] 0.0 0.0
[his=per] 04 1.0
[nau=yes] 0.0 0.0

4 That is, it makes a conjunction of attribute-value pairs and checks whether
this conjunction satisfies the condition on a probabilistic rule: aRj(D) 25,
and kR;j(D) 28

5 In this example, thresholds for accuracy and coverage, 55 and Sy are
again set to 0.5 and 0.3, respectively.

|[nau=no} | 0.5| 1.0}

Then, the first step revises accuracy and coverage for all the
elementary relations (Table 3). Since the coverages of [loc=lat],
[nat=thr], and [nau=yes] become larger than 0.3, they are included in
Listy. In the same way, [loc=who], [nat=per], and [nau=no] are
included in List;.

Table 3: Revised Accuracy and Coverage of Elementary Relations

(m.ch)

Relation Accuracy Coverage

[loc=who] 0.5 0.67
[loc=lat] 0.5 033
[nat=per] 0.67 0.67
[nat=thr] 033 0.33|
[his=per] 0.5 1.0
[nau=yes] 0.5 0.33]
[nau=no] 0.4| 0.67

Next, the third step revises two measures for all the rules in Listg
whose conditional parts include a member of List; Then, the
formerly induced probabilistic rules are revised into:

[loc=who]&[nav=no] - m.ch. a=0.67,x=0.67,
[nat=per] > m.ch. a=0.67, x=0.67.

and not one of them is removed from Lisz, .

Then, the fourth step revises two measures for all the rules in List,
whose conditional parts include a member of List). Then, the
following probabilistic rule satisfies o>0.5 and x>0.3:

[loc=lat]&[nau=yes] - m.ch. o=1.0,x=0.33,

and is stored into Listg. Finally, List, and List. for mch. are

calculated as follows:

List;~{[loc=who]&[nau=no], [nat=per]&[nau=no],
[loc=lat}&[nau=yes]}, and

Listy={{loc=who], [loc=lat], [nat=per], [nat=thr], [his=per],
[nav=yes], [nau=no] }.

EXPERIMENTAL RESULTS

PRIMEROSE-INC was evaluated to the following two clinical
databases and compared with CN2[2], AQ15[3], CA.5[5]), and
PRIMEROSE[7]. One is on differential diagnosis of headache,
which consists of 1477 samples, 10 classes, and 20 attributes. The
other one is on differenital diagnosis of meningitis, which consists of
198 samples, 3 classes, and 25 attributes.

The experiments were performed by the following three steps.

First, these samples are randomly splits into pseudo-training samples
and pseudo-test samples. Second, by using the pseudo-training



samples, PRIMEROSE-INC and other four systems induces rules
and the statistical measures.6 Third, the induced results are tested
by the pseudo-test samples. These procedures are repeated for 100

imes and average the estimators for accuracy of diagnosis over 100

Table 4: Exberimental Results: Accuracy and Number of Rules

(Headache)
Method Accuracy Number of Rules
PRIMEROSE-INC 89.5+5.4% 67.313.0
PRIMEROSE 89.5+5.4%)| 67.313.0
C4.5 85.812.4% 16342.1
CN2 87.043.9%| 192+1.7
AQI15 86.242.6%| 312421

Table 5: Experimental Results: Accuracy and Number of Rules

(Meningitis)
Method Accuracy Number of Rules
PRIMEROSE-INC 81.513.2% 523%14
PRIMEROSE 81.5+3.2% 52314
C45 74.032.1% 11.943.7
CN2 75.043.9%| 33.1+4.1
AQI5 80.7+2.7%| 325123

Table 4 and 5 give the comparison between PRIMEROSE-INC
and other rule induction methods with respect to the averaged
classification accuracy and the number of induced rules. These
results show that PRIMEROSE-INC attains the same performance
of PRIMEROSE, which is the best performance in those rule
induction systems.

Table 6: Experimental Results: Spatial and Temporal Complexity

(Headache)
‘Method Code-Area Cul-CPU time
PRIMEROSE-INC 1824114219 4027461
PRIMEROSE 1210198 1074031219
C4.5 - 79198+193
CN2 - 1181974211
AQIS5 - 120192+108

DEFINITION. Cul-CPU time: Cumulative CPU Time

Table 7: Experimental Results: Spatial and Temporal Complexity

(Meningitis)
Method Code-Area Cul-CPU time
PRIMEROSE-INC 1241434 19021710
PRIMEROSE 210+14 16269+508

6 The thresholds 5, and 5y were set to 0.75 and 0.5, respectively in these
experiments.

C4.5 - 118621707
CN2 - 111174504
AQIS - 121174299,

Table 6 and 7 give the comparison between PRIMEROSE-INC and
other rule induction methods with respect to the code area,

and cumulative CPU time, which denotes how much time is totally
needed to rerun the rule induction methods from scratch when a new
sample is added. These results show that PRIMEROSE-INC
outperforms all the other non-incremental leaming methods,
although they need much larger memory space for running.
Furthermore, the comparison of PRIMEROSE-INC with
PRIMEROSE suggest that the computational resources needed for
incremental learning are much larger than those for ordinary leaming
in order that incremental learing methods induce all the same results
as the ordinary leaming methods.

DISCUSSION AND RELATED WORK

Applicability to Clinical Practice

As mentioned earlier, one of the important practical limits of non-
incremental leaming systems is that these methods have to be re-
executed when a new additional sample is given, which causes the
computational complexity to be expensive even if the complexity is
polynominal, as shown in Table 6 and 7. It is one of the reasons why
such classification systems have not been used for real-sized
applications, such as the analysis of actual computerized patient
records, because data acquisition of medical patient records is very
dynamic.

On the other hand, one of the practical limits of incremental leamning
systems is that they suffer from the problem on sampling order:
induced results will be different if the order of training samples is
changed. Thus, in order to apply incremental leaming methods to
practical situation, we have to solve the problem on sampling order.
The introduced method PRIMEROSE-INC solves this problem,
which suggests that the applicability of our approach is much wider
than that of other systems.

Proposition Logic and First Order Logic

The introduced method induces probabilistic propositions
incrementally from databases. Another possiblity of rule induction is
to induce first order-relations from datasets, which have been studied
in research on logic programming. This research area is called
inductive logic programming (ILP), based on the subsumption
technique[10]. The advantages of ILP over proposition rule
induction methods is that ILP systems use domain knowledge clearly
and utilize induced knowledge as new domain knowledge. This
usage of induced knowledge can be viewed as incremental leaming,
However, unfortunately, ILP systems views the incorporation of new
domain knowledge as an intermediate step to induce important rules,
not as revision of rules. Thus, rule induction systems using ILP are
classified into non-incremental leaming methods and they suffer
from the same problems as non-incremental rule induction methods
mentioned earlier.



Shan and Ziarko introduce decision matrix method, which is based
on an indiscemible matrix, in order to make incremental learning
methods efficient{6].

Their approach is simple, but very powerful. For the above
example shown in Table 1, the decision matrix for m.ch. is given
as Table 8, where the rows denote positive examples of m.c.h.,

the columns denote negative examples of m.ch., and each matrix
element ajj shows the differences in attribute-value pairs between
ith sample and jth sample. Also, ¢ denotes that all the attribute-value
pairs in two samples are the same.

Table 8: Decision Matrix for m.c.h.

U 3 4 5
1 (=w), (0=p) _ |@=),(n;=n) (¢
2 (=w), 0=p)  |@=p), =) |

NOTATIONS: I=w: loc=who, n=p: nat=per, n,=n: nau=no

Shan and Ziarko discuss induction of deterministic rules in their
original paper, but it is easy to extend it into probabilistic domain. In
Table 8, the appearance of ¢ shows that decision rules for m.ch.
should be probabilistic. Since the first and the second row have the
same pattern, {1,2,5} have the same pattem of attribute-value pairs,
whose accuracy is equal to 2/3=0.67. Furthermore, rules are
obtained as:

[loc=who]v[nat=per])A([nat=per]vinauv=no]) - m.ch.,

which are exactly the same as shown in Section 3.

When a new example is given, it will be added to arow when it is a
positive example, and a column when a negative example. Then,
again, new matrix elements will be calculated. For the above
example, the new decision matrix will be obtained as in Table 9.

Table 9: Decision Matrix with Additional Sample

U 3 4 5

1 (=w), (0p)  |@p), (=) |

2 (=w), (n=p)  |(@=p),(n,=n) [¢

6 =y) )] (=), (=),
0=y)

NOTATIONS: I=w/1: loc=who/lat, n=p/ : nat=per/thr,
n,=y/n: nau=yes/no

Then, from the last row, the third rule: [loc=latjA[nau=yes]
—m.ch. is obtained.

The main difference between our method and decision matrix is
that the latter approach is based on apparent accuracy, rather than
coverage. While the same results are obtained in the above simple
example, the former approach is sensitive to the change of coverage
and the latter is to the change of accuracy. Thus, if we need rules of
high accuracy, decision matrix technique is very powerful.
However, a rule of high accuracy may support only a small case,
which suggests that this rule is overfitted to the training samples and
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coverage should be dominant over accuracy in order to suppress the
tendency of overfitting. However, original decision matrix technique
does not incorporate such calculation of coverage. Thus, it needs to
include such calculation mechanism when we extend it into the
usage of both statistical measures.

CONCLUSION

In this paper, a new approach to incremental induction of
probabilistic rules, called PRIMEROSE-INC, is introduced, which is
based on the extension of variable precision rough set model. This
system was evaluated on two clinical databases. The experimental
results show that the introduced system induces the same rules as
those induced by PRIMEROSE, but that the former method requires
much computational resources than the latter approach.
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